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Abstract: Detecting the number of signals and estimating the parameters of the sig-
nals is an important problem in signal processing. Quite a number of papers appeared
in the last twenty years regarding the estimation of the parameters of the sinusoidal
components but not that much of attention has been given in estimating the number
of terms presents in a sinusoidal signal. Fuchs developed a criterion based on the
perturbation analysis of the data auto correlation matrix to estimate the number of
sinusoids, which is in some sense a subjective-based method. Recently Reddy and
Biradar proposed two criteria based on AIC and MDL and developed an analytical
framework for analyzing the performance of these criteria. In this paper we develop
a method using the extended order modelling and singular value decomposition tech-
nique similar to that of Reddy and Biradar. We use penalty function technique but
instead of using any fixed penalty function like AIC or MDL, a class of penalty func-
tions satisfying some special properties has been used.’r We prove that any penalty
function from that special class will give consistent estimate under the assumptions
that the error random variables are independent and identically distributed with mean
zero and finite varinace. We also obtain the probabilities of wrong detection for any
particular penalty function under somewhat weaker assumptions than that of Reddy
and Biradar or Kaveh et al.. It gives some idea to choose the proper penalty function
for any particular model. Simulations are performed to verify the usefulness of the
analysis and to compare our methods with the existing ones.
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1 Introduction

The problem of detecting the number of terms and estimating the parameters of
sinuoids in presence of noise is an important problem in signal processing. In the last
twenty years several methods have been proposed to estimate the frquencics of the
sinusoids very efficiently, see [1], but not much attention has been paid in estimating
the number of sinusoids presents in any particular signal. Tufts and Kumaresan (7]
proposed the modified forward backward linear prediction (MFBLP) technique, which
is capable of estimating the poorly separated frquencies, with short data lengts and
moderate SNR, but unfortunately it is known to give inconsistent estimates (see [10]
and [13]). They have also given a graphical technique to estimate the number of
sinusoids, which is very subjective. Some of the other techniques which are available
in the literature for example [8], [9], [3] can be used, but they also depend on the
subjective choice of the individual and therefore makes it difficult to implement in
practice.

Rao [10] proposed an information theoretic criterion to estimate the number of
signals for undamped exponential model but it is observed [5] that Rao’s suggestion
is very dufficult to implement in practice. A practical implementation procedure has
been suggested in [5] but it is observed that the proposed method depends very much
on the penalty function used. Some suggestions about the penalty function have
been given mainly based on the computer simulation but not on any proper analysis.
Under the assumptions of normality of the error components, recently Reddy and
Biradar [2] proposed two criteria one is AIC type and the other one is MDL type
based on the singular value decomposition technique and using both the forward and
backward linear predictor equation. They also obtained the probability of over as
well as under estimation following the assumption made by [4] and [11]. They use
the assumptions of normality of the error random variables in developing the criteria
as well as in the performance analysis. The performance looks quite satisfactory.

In this paper, we develop a method mainly based on the extended order modelling
and singular value decomposition technique. We use penalty functions similarly as
" AIC and MDL but instead of any particular penalty function a class of penalty
functions satisfying some special properties has been used. We prove that any penalty
function from that particular class will give consistent estimate. We only assume
that the errors are independent and identically distributed (i.i.d.) with mean zero
and finite variance to prove the consistency result. In fact we do not need any
distributioinal assumptions on the error random variables. Next we obtain an estimate
on the probability of wrong detection under the assumptions that the errors are
ii.d. Gaussian random variables with mean zero and finite variance. We obtain the
probabilty of wrong detection using matrix perturbation technique and large sample
approximation. Once we obtain the probability of wrong detection for any particular




penalty function, we choose that penalty function for which the probability of wrong
detection is minimum. Some simulations are performed to see the usefulness of our '
method and to compare it with the other existing ones.

The rest of the paper is organised as follows. In Section 2, we give the estimation
procedure and the consistency result is proved in Section 3. The performance analysis
is carried out in Section 4 and some numerical experiments are performed in Section
5. The choice of the penalty function is-suggested in Section 6 and finally we draw
the conclusions of our work in Section 7.

-2 Estimation Procedure

Consider N uniformly spaced data samples y(n) of M real sinusoids corrupted by
additive white noise

y(n) = % aisin(2mwin + ¢;) + e(n);n=1,.,N (1)

i=1

where a;’s are the amplitudes, can be any arbitrary real numbers, w}s are the
angular frequencies lying between 0 and .5, ¢.s are the initial phases of the i th
frequency lying between 0to 27. ¢(n)’s are i.i.d. random variables with mean zero
and finite variance 2. M, the number of signals, is assumed to be unknown. Given
a sample of size N, the problem is to estimate M. Let us assume that the number
of sinusoids can be at most I, which is known, i.e. M < K. Consider the following
data matrices; '

y(1) . y(L)
y(N-L+1) ... y(N)
and
1 T

here L is any integer such that 2 < L < N — 2K + 1. Let the eigenvalues of Rn
be A; >,...,> Ar. Compute

IC(K) = log(Azk+1 +1) + kCn-r+1 (4)




fork =1,..., 2K, here Cy (penalty functions) satisfies the following conditions

OnVN_ (5)
Vi6oglogN

Then our criterion is the following; Choose M such that

(@)Cx >0 (b)Cx = 0 (c)

IC(M) = min[IC(1),...,IC(K)] (6)

So M is an estimate of M. In the next scction we prove that M converges to M

almost surely for any Cl, satisfying (5), under the assumptions that the errors are
i.i.d. with mean 0 and finite varinace 0% > 0.

3 Consistency Results

Let us denote the (p,q)th element of the matrix ATAF by apg. Therefore

N-L
apg = >_ y(@+s)y(g+5s) (7)

s=0

Now write;
\

R

y(n) = 3. aisin(2rwin + ¢;) + €(n)

i=

-

izj[e:x;p(g?ww, n)exp(j;) — exp(—j2rwin)exp(—jd:)] + €(n)

= Z Aiexp(j2nm;n) + €(n) (8)

where j = -1, A1 = 3} eIt A, = —5+ eI n = w;,m = —w, and the others
are defined similarly. Since y(q + s) = 7(g + s) (-’ denotes the complex conjugate),

I
S EM:

N-L

apg = 9 y(p+9)i(g+s)
3=0
N-L 2M

= Y (O Awap(j2mm(p+5)) +e(p+5)) X

s=0 i=1

WM
(3" Asezp(—j2mni(g + 5)) +E(g + 5))
Nei 2
= Y > Asexp(j2mn:(p + 5)) )(ZA exp(—j2mn;(g + 5)))

s=0 i=1 =1




N-L 2M
+ Z_% ep+s)(> A,-e:rp(—ﬁ?rfh(q +3)))

i=1

N-L 2M
+ . &g+ 95) (> Aezp(2nmi(p + 5)))

Mot =
+ Z_% e(p + s)é(q + s) (9)

Therefore by the law of the iterated logarithm of the M — dependent sequence, we
can say that for fixed L as N tends to infinity, we have

1 loglog(N = L +1) /2
Rn = T = H 2
N MN—L+1AFAF QDQ" + 0T + O( N—IL+1 ) (as) (10)
here ‘a.s.” stands for almost surely and the matrix £ and D are as follows:
ezp(2mm) ... exp(2mnan)
Q= : : : D =diag(l] Aill*,.... || 4oml®) (1)
exp(2rmL) ... exp(2mnuplL)

Let us denote the matrix QDQH by ¥ and let the non zero eigenvalues of T be
M1 > ... > pap. Let us denote the ordered eigenvalues of  + ¢2I by \; > ce Aoy >
Aot = ...= A, =04 N =pi+otfor i=1,...,2M and \; = o2 for 5 =
2M +1,...,L. We need the following result for further development:

Lemma 1: Let P and Q be two Hermitian matrices of order m x m and let the
spectral decomposition of P and Q be as follows

m m

P =) 4p;p! and Q=3 maiq!? (12)
i=1 i=1

where 6; < ... < épand 3, < ... < ¥m are the ordered eigenvalues and p;’s,

Qi’s are the corresponding orthonormal eigenvectors of P and Q respectively, then if

it — gl < aforall 4,k=1,...,m and for some a, then there is a constant C such

that }0; — 1 < Ca.

Proof : It mainly follows from von-Neumann’s inequality but see (12] for details.

Using Lemma 1 and (10) we obtain

N loglog(N — L + 1) .}/?
A=\ +O( g;(_LH N (as) (13)

Now to prove M is a consistent estimate of M observe that it is enough to prove
IC(q, CN-£41)—IC(M, Cnop41) >0;  for gq=1,..M-=1,M+1,...K (14)

as N — oo.




Caselig< M

IC(g, CN-1+1) = IC(M, Cn-11) = log(lags1) —log(Aarr41) + (= M) Cy_p4y
= log(Azg41 + 1) = log(Aamr41 + 1)
= log(pam+1 + 0% +1) —log(o? +1) > 0 (15)
Case I. g > M

IC(q, CN-p41) = IC(M, Cn_p1) = log(Aags1) — log(Aanrs1) + (¢ — M) Cnrpy
— log(l+0*+ hy) —log(l + 02+ hy)
+(g— M) Cn_rs1
= log(l+0o?) + hll _:02 - hgﬁ?;z-
—log(1 +0%) + (¢ = M) Cn_p41
loglog(N — L +1)

O =x=+1 ) (16)

here h, = O(%ﬁ.ﬂ)lﬂ = h,.
Now observe that;
(IC(Q’ CN—L+1) - IO(M, CN—L+1)) = (q - M) +
1 O(loglog(N—L+1))l/2
CN-t+1 -~ N-L+1
1 loglog(N — L +1)
0 17
+CN—L+1 ( N-L+1 ) ()

From the properties of Cy (see (5)), it follows that the second and the third term of
the right hand side of (17) goes to zero as N tends to infinity, therefore (17) implies

1
CN-L+1

(IC(g, Cn-p+1) = IC(M, Cn-r41)) = (g— M) >0 (18)

Therefore we can conclude that for large (N — L + 1)
(IC(q, CN—L-H) —IC(M, CN—L+1)) >0 (19)
Combining (15) and (19) we obtain (14).

4 Performance Analysis

In this section we obtain an upper bound for P(M # M). Now
P(M#M) = P(M< M)+ P(M> M)

6




M
q

Z__jIP(M =q)+ f P(M = q)

0 g=M+1
M-1
= ) P(C(q Cn-L41) — IC(M, CN-r+1) <0)
g=0 '

K

+ E P(IC(q, CN—L+1) —IC(M, CN—L+1) < 0) (20)
g=M+1 :

Let’s consider two different cases:
Case I, g< M

P(IC'(q, CN—-LH) - IC(M, CN—L-{-I) < 0)
= P(log(Agqs1 +1) — log(anrss + 1) + (g — M) Crn-p41 < 0)
= P(log(Aag+1+ 1) = log(Aapr41 + 1) +(q= M) Cy-p41 <
log(Aarrsr +1) — log(Aaar+1 +1) + log(Aog41 + 1) — log(Aags1 + 1))
< P(log(Agg+1 +1) — log(Aaprgy + 1) < (M —q) Cnopy1 +
llog(Aanrs1 +1) — log(Azarar + 1)] + |log(Dagss +1) — log(Aag11 +1)]) (21)

Let 6 be such that for large N

log(/\2q+1 + 1) - lOg(/\gM.H + 1) > (M h q) CN-L+1 +4 (22)
Therefore for large N

P(IC(q, Crn-r11) = IC(M, Cy_p41) <0) =0 (23)
CaseIll, g > M

P(IC(q, Cn-r41) = IC(M, Cy_p4;) < 0)
= P(log(Ags1 +1) — log(Aarr41) + (¢ = M) Cy_p1 < 0)
= P(log(Aapr41 +1) — log(A2q41+ 1) > (¢ — M) Crn-ry1) (24)
Therefore observe that from (23) it is clear that for large N the probability of under-
estimation is zero and to obtain (24) we need to know the Joint distributions A; for
k=2M+1,...,L. Let’s assume at this point that €(n)’s are i.i.d. Gaussian random
variables with mean zero and variance o2. Later on we see that it is possible to relax

this assumption. Let’s denote the matrix (X +02%I) by R. Therefore from the central
limit theorem, we can say that asymptotically

VN — L+1(Vec(Rn_141) — Vec(R)) ' (25)

will be normally distributed with mean vector zero and certain L? x L? variance
covariance matrix I' (say). Here Vec(.) of an L x L matrix denotes the L2 x 1 vector

7




stacking the columns one below the other. Using the perturbation theory ([15]; page
66) let’s write |

Rn_Ly1 =R+ (RN—L+1 - R) =R +¢B (26)
Here 0 < € < 1, and B is a Hermitian, zero mean matrix with elements that are
asymptotically jointly Gaussian, which follows from (25). Let \; be any particular
eigenvalue of R and let the corresponding normalized eigenvector be z;. Observe
that if A; is a multiple eigenvalue of R, then z; is not unique, but then we take one
particular z; (see [15] page 69). Let )i be the corresponding perturbed eigenvalue of
RnN-L+41, then from ([15] page 69) it follows that

;\i = /\,‘ -+ E(Z;I‘Bzi) (27)

Since the elements of B are normally distributed, therefore z] Bz;, which is a linear
combination of the elements of B, will also be normally distributed with mean zero
and finite varinace. Now from (27) it follows that

E(\) ~ N (28)

Now to compute the covariance between ); and j\j, let z; and z; be any two orthonor-
mal eigenvectors corresponding to A; and ); respectively, therefore we have

Xi = M\ + €(zT Bz;) (29)
5\_,' =)\ + e(z;-rsz) (30)

Therefore X A
E(/\, - /\,)(/\J - /\J) = €2E(Z;I‘Bzi) (Z;rBZj) (31)

Since we are mainly interested about the distribution of the repeated eigenvalues, so
let’s take z; and z; be any two orthonormal eigenvectors corresponding to o2, therefore
we can obtain after some simplifications;

4 N—-L+1 N-L+1

(N —=L+1)? Z Z (27 Tpaz;) (2 Dopz:) (32)

p=1

E(z,.TBz,-)(zJT Bz;) =

Here T'p,’s are L x L matrices and they are defiend as follows ['py = 'L, and ['p =0
if (g—p) > L. For q > p,[',, has all the elements to be zero except at the positions
(q—p+1,1),...,(L,p— ¢+ L) which are ones, as follows;

0 0 0)
1 ... 0 0

FP(I= 0 1 0 ? (33)
\0 ... 1 0]




Therefore we obtain that Agpr41 and 5\2q+1 for ¢ > M are jointly normal each of them

with mean o2 and it has the variance covarinace matrix which can be obtained from
(32).

Observe that even if we know the joint distribution of X; for ¢ = 2M +1,..., L,
theoretically it is very difficult to compute (24). We use simulation technique similarly

as [11] to compute (24) by using the joint distribution Agpr4+1 and :\2q+1. The details
will be explained in the next section.

Observe that since we assume that the eigenvalues of L are distinct therefore
the distribution of Ay, ..., A2n will be independent of Aopm+1,--+» Ar asymptotically.
2

Moreover they will be jointly normal with mean )\; and variance N-ALTI for 1 =
1,...,2M see [14]. and they will be independent of each other.

5 Numerical Experiments

In this section we perform some numerical experiments to present both the effective-

ness of our method and the usefulness of the analysis. We consider the same model
as that of [2].

The data sample are generated from the following model:
y(n) = V20sin(2rwin) + V20sin(2rwen + ¢) + €(n); n=1,...,N. (34)

here w; = .2 and wp = .2 + & with 6 = 5 and N = 64. Here €(n)’s are i.i.d. Gaussian
random variables with mean zero and variance o2, which is chosen appropriately to
give the desired signal to noise ratio (SNR) defined as SNR = 10log1910/a®. We

use twelve different Cy, all of them satisfying (5) but converging to zero at different
rates. We define them as C’S\}),...,C,(\}z). They are as follows; c) = —}\7)'1,053) =

3 4 5 6 7 8
('11\7)'2»05\!) — (_117).3,01(\,) - (#).4’01(\’) - E;—ﬁ’cg\f) — (loglN).2’Cl(V) — (Tngﬁ)A’ CI(V) —

(122) 6, O = (k)8 CH” = (g LN = ()3 ON = (o) We
take K = 8, i.e. the maximum number of sinusoids, same as (2] and L = 32.
Out of 500 simulations, the percentage of correct estimate (PCE), the percentage
of under estimate(PUE) and the percentage of over estimate (POE) are reported
for SNR = 5dB and SNR = 10dB. We also obtain the theoretical value for the
upper bound of the probability of over estimate as follows. We draw a sample of
size (L-2M) from Gaussian random variable with mean o2 and variance covariance
matrix given by (32), we order them as \; fori = 2M,...,L and check whether
(logS\2M+1 — loghag+1) > (g — M) Cn-p+1 is true or not forq=M+1,..., K. We
repeat this process 5000 times and compute the percentage of times it is true and that
gives an estimate of (24). Observe that although we have seen that the probability of

9




underestimate will be zero for large sample size, we have calculated the probability
of underestimate using the distribution properties of the },,... , ;\2M+1 and using the
same procedure as above by repeating over 5000 times. The results are reported in
Table 1 for SNR = 5dB and in Table 2 for SNR = 10dB. The quantity within the
bracket indicate the theoretical bounds of POE’s and PUE’s.

Table 1 ' Table 2
Cy |PUE|[PCE]| POE cY |PUE|PCE| POE
cy o) |97 3(5) ¢y’ 10(0) | 100 0(0)
CY | 0(0) |84 |16(22) c@ |o(0) |92 8(8)
CY 1 0(0) |59 | 41(50) CY | 0(0) |66 | 34(28)
cy o) |31 |69(82) Ci) | 0(0) |46 | 54(60)
CY [ 0(0) |49 | 51(56) CY 1 0(0) |55 | 45(41)
Y 10(0) [100 | o) c® o) 100 | 0(0)
c{ 1o(0) |94 6(14) c | 0(0) |96 4(2)
c | o) |82 |18(23) c® [o) |90 10(9)
cP | o) |64 |36(39) cy 10(0) |75 | 25(23)
cg” o) |94 | 6(12) cl® 1 0(0) | 96 4(2)
eV o) |20 | 71(82) c{V o) |45 | 55(60)
c${? | 0(0) |98 2(5) cy? | 0(0) | 100 0(0)

At finite sample size the performance of the proposed method very much depends
on the penalty function used, although all of them give consistent estimates as the
sample size tends to infinity. From Table 1 and Table 2 it is clear that the performance
of all the methods becomes worse at low SNR, which is not very surprising. It is
important to observe that the theoretical probability matches quite well in almost
all cases considered and the estimates are better in most of the cases at high SNR.
It seems that the approximations made for the large sample work reasonably well at
moderate sample sizes and for mederate SNR.

6 How to Choose the Penalty Function?

Looking at the tables it is clear that the theoretical bounds are quite close to the
actual one. But unfortunately without knowing the original parameters we can not
calculate the theoretical probabilites. Reddy and Biradar [2] also did not raise this
question that how to estimate these bounds. One way of course by replacing these

10




barameters values by their estimates. We would like to estimate these probabilities
with the help of the given sample and use it to choose the proper penalty function.
The idea is as follows: From any particular realization of the model, we compute
the matrix Rn_r41 and obtain the eigenvalues and the corresponding eigenvectors.
Now suppose using the penalty function C’ﬁ’f), we estimate the order of the model
as My. Assuming M, is the correct order model we compute the estimate of o2
by averaging the last L — 2 M, eigenvalues. Now using the joint distribution ), for
t=2M+1,...,L, (24) can be calculated by using the simulation technique as
discussed in the previous section. Similarly from ;\1, ceny :\szH, we can compute
an estimate of the probability of under estimate. Therefore adding the two, we can
obtain an estimate of the upper bound of the probability of wrong detection. It can
be shown easily that for large N, the estimate of the probabiltiy of wrong detection
under the asuumption of correct order model will be less than the estimate of wrong
detection under the assumption of lower/higher order model, because the former one
goes to zero as N tends to infinity, where as the later one goes to a positive quantity.

We use this idea and compute the estimate of the probabiltiy of wrong detection
for all the criteria and choose that one which gives the lowest estimate of the proba-
bility of wrong detection. We have used the same model and the same set of penalty
functions and in each trial we choose that penalty function which gives the lowest
estimate of the probabilty of wrong detection. In each trial we run 100 simulation
to compute the estimate of the probability of error and it is repeated over 500 trials.
The result is reported in Table 3, which indicates the percentage of underestimate,
correct estimate and over estimate out of these 500 replications.

Table 3

SNR | PUE | PCE | POE
odB |0 94 6
10dB | 0 95 5

From Table 3, it is observed that the proposed method works quite well. For the
same model it is observed (2] that when SNR = 5dB, the simulation shows that MDL
criterion can detect at most 88 percent and at SNR = 10dB it can detect at most
91 percent correctly but in our case it is observed that it can detect 94 percent and
95 percent respectively. It is higher than what they have obtained, which is not very
surprising because we have a class of penalty functions and from there we are trying
to choose the best.

Another question naturally comes that how to choose the class of penalty func-
tion. We suggest the following way; take any particular class of resonable size may be

11




around ten or twelve then obtain the estimate of the probability of wrong detection
for all the methods and compute the minimum value, if the minimum itself is high
that means the error has been calculated using wrong order model and the class of
penalty function is not good and on the other hand if it is low, that means this class
is fine. We have computed the mean and standard deviation of the minimum proba-
biltiy of error when the model has been chosen correctly and when the model has not
been chosen correctly for the same experiments. The results are reported below in
Table 4a and Table 4b, where Table 4a gives the mean and standard deviation (s.d)
of the minimum probability of error when the model has been chosen correctly and
Table 4b gives the result when the model has not been chosen correctly.

Tableda Tabledb
SNR | mean s.d SNR | mean s.d
5dB | .0489 | .0845 5dB | .2850 | .1360
10dB | .0255 | .0527 10dB | .2540 | .1288

From the Tables 4a and 4b it is clear that the mean of the minimum probability of
error under the assumptions of the correct order model is much smaller than under
the assumption of wrong order model. So it is expected that the minimum probabiltiy
of error can give us some idea whether the class is sufficient or not.

7 Conclusions

In this paper, we propose a method to detect the number of sinusoids present in
a sinusoidal signal corrupted by additive noise. We use extended order modelling
and singular value decomposition technique. We prove the strong consistency of the
proposed method under the assumptions that the errors are i.i.d. with mean zero and
finite variance. We have done some performance analysis of the proposed method
under the assumption that the errors are Gaussian. But theoretically speaking it is
possible to relax this condition. Observe that (25) is true asymptotically even if the
errors are not Gaussian. But in that case more sample size is required. Another
important point is to observe that we can use both the backward and forward data
to compute Ry of Section 2 and in that case it is not very difficult to prove that the
proposed criteria will be consistent but unfortunately in that case the performance
analysis becomes difficult, particularly the expression (32) will have more terms so it
is not pursued here. It is observed that our method behaves quite satisfactory and
works better than the existing methods.
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